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Introduction 

 
Perhaps the most contentious dispute arising from recent efforts to reform mathematics 
education concerns the place of traditional arithmetic algorithms in the elementary school 
curriculum. Opposition to teaching algorithms, especially the one for long division, can 
be traced at least as far back as the National Council of Teachers of Mathematics 
(NCTM) 1989 Standards Document’s call for de-emphasis of formal manipulation skills 
[N]. Indeed, prominent educators, including Steve Leinwand and Constance Kamii, have 
proposed that the standard algorithms be banished from American classrooms because 
they undermine children’s understanding, performance, and even emotional well-being 
[K] [L]. None of these effects has ever been documented by a properly controlled 
experimental study using a statistically valid sample population. 
 
Most new curricula of the past decade were based on the 1989 NCTM Standards and did 
in fact de-emphasize the standard algorithms or omit them entirely. Although the year 
2000 revision of the Standards advocated “investigating” some of those algorithms as one 
of several possible techniques of whole number calculation [N1], the practical effect of 
that apparent revision of perspective remains to be seen. 
 
This paper will argue unequivocally for the critical role played by the standard algorithms 
of arithmetic in students’ mathematical development and in their preparation for 
mathematics-based careers. To do so, it will address misunderstandings supporting the 
view that student-invented procedures and other alternative procedures provide a 
mathematically valid substitute for, rather than a pedagogically useful supplement to, 
traditional methods for whole number calculation [K][L][S]. Its recommendation can be 
stated succinctly as follows. Instead of being forced into programs that de-emphasize, 
denigrate, or discard the traditional algorithms of arithmetic, all American children 
should receive balanced K-8 mathematics instruction that includes appropriate emphasis 
on the development of formal and algorithmic skills. Only then will they have a 
meaningful chance to develop their own competencies and thereby obtain access to 
careers that are both personally rewarding and crucial to the well-being of the larger 
society.  
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The importance of formal algorithmic skills to college-bound students was underscored 
in the May, 2001 report of a commission of experts (the “Math Commission”), chaired by 
City University of New York Chancellor and mathematician Matthew Goldstein, and 
charged by Schools Chancellor Harold M. Levy with reviewing mathematics education in 
the New York City school system [Go]. Recommendation 2 of that report calls for 
establishing 

 
“a new option for all interested students in grades 9-11, emphasizing formal and 
abstract mathematical competency.”  

 
“Formal and abstract mathematical competency,” henceforth abbreviated FAMC, 
denotes, among other things, the ability to work efficiently and accurately with the 
symbolic algebraic manipulations emphasized in the traditional high school curriculum. 
A principal theme of this essay is that children’s early exposure to, and adequate practice 
with, the standard algorithms of arithmetic constitute critical first steps in acquiring 
FAMC.  
 
Concerning the recommended new option, the following remarks, included in the Math 
Commission’s publicly distributed draft document but omitted from its final report, 
should be of particular interest to curriculum developers and to faculties of schools of 
education: 

 
“It is important to recognize that the goals of the current New York State 
curriculum…come at a cost. Whenever an emphasis is placed on ensuring that 
applications are made to ‘real world’ situations …less emphasis is placed on 
arithmetical or mathematical ideas and the formal, abstract contextual settings 
sought particularly by students who will go on to become scientists, engineers, 
mathematicians, computer scientists, physicians, and educators of mathematics. 
 
“Despite their many strengths, the NCTM standards do not contain the rigor, 
algorithmic approach, formal methods, and logical reasoning which are required 
of this small but critically important portion of the population.” (emphasis added) 

 
It is not without significance for the mathematics education community that “educators of 
mathematics” are included in the list of professionals who require training in an 
algorithmic approach and formal methods. That list is not complete, of course: many 
programs in nursing, physical therapy, occupational therapy, psychology, architecture, 
economics, business, and other professions require students to complete or to have 
completed courses in calculus, statistics, or physics. 
 
The draft document’s quoted characterization of the portion of the population requiring 
FAMC as “small” is misleading. In the Fall, 2000 semester, when 1.156 million U.S. high 
school graduates began a four-year college, 463,000 students enrolled in first-year 
calculus. In addition, there were 236,000 enrollments in undergraduate statistics courses 
[BLS][LMR]. In fact, therefore, the cohort of students aiming for careers that require 
calculus and statistics is quite large. Furthermore, that group can only be expected to 
increase in size and importance as computer and other technologies advance. Students 
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who graduate high school with inadequate FAMC will be unable to succeed in college 
mathematics, and as a result will confront circumscribed career and life choices.  
 
The Math Commission report does not address a critical question: what type of K-8 
curriculum will, or will not, adequately prepare students for success in the proposed 
FAMC high school mathematics option? A principal motivation for writing this essay is 
concern that students whose K-8 mathematics programs de-emphasize or eliminate 
traditional algorithmic approaches will be effectively denied access to that option, or 
indeed to any high school program designed to prepare them for rigorous college 
mathematics. Among the groups most severely impacted will be the children of non-
English speaking immigrants, children who until now have been able to enter the 
mainstream of American society by pursuing careers that emphasize mathematical, as 
opposed to linguistic, competency. 
 
This paper is organized as follows. Section 1 lists “myths” and “facts” about standard, 
alternative, and student-invented algorithms. A gentler choice of words would be 
"assertions" and "discussions." The more eristic terminology is used because it appears to 
have become standard usage in discussions of educational issues.  
 
Section 2 analyzes a well-known alternative division algorithm, described and advocated 
in a paper by Judith Sowder, a professor of math education at San Diego State University 
[S]. That procedure is shown to be cumbersome and error-prone when applied to a 
representative problem, rather than to the single unusually easy demonstration problem 
Sowder uses in an attempt to portray the alternative algorithm as reasonably efficient.  
 
Section 3 describes how and why the traditional algorithms of arithmetic are 
indispensable preparation for the study of algebra with variables, and therefore also for 
physics, statistics, and calculus courses required by students who must acquire FAMC.   
 
Finally, an appendix describes and illustrates the standard algorithms for multiplication 
and division of multi-digit decimal integers. It is hoped that the explanations therein will 
convey both the ideas underlying the algorithms and their formal implementation in a 
style that can be expanded and shared with students at all levels, up to and including 
prospective and in-service elementary and middle school teachers. 
 

1. Myths and Facts 
 
This section will refute a number of assertions that are often marshaled to argue against 
the continued study of the standard algorithms, each based on specific misunderstandings 
that will be addressed in detail.  
 
Myth 1: It is no longer sensible for children to learn the standard algorithms because the 
right answer can be found much more easily with a calculator.  
 
Fact: The importance of teaching algorithms was addressed in the 1999 open letter 
addressed to then Secretary of Education Richard Riley and signed by 200 
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mathematicians and scientists to protest the designation of 10 NCTM-based programs as 
“promising” or “exemplary”[OL].  To refute the extreme view that “continuing to teach 
[pencil-and-paper algorithms] to our students is not only unnecessary, but 
counterproductive and downright dangerous [L],” the letter stated:  

In sharp contrast, a committee of the American Mathematical Society (AMS) ….published a 
report which stressed the mathematical significance of the arithmetic algorithms, as well as 
addressing other mathematical issues, [including] the statement:  

"We would like to emphasize that the standard algorithms of arithmetic are more than just 'ways 
to get the answer' -- that is, they have theoretical as well as practical significance. For one thing, 
all the algorithms of arithmetic are preparatory for algebra, since there are (again, not by 
accident, but by virtue of the construction of the decimal system) strong analogies between 
arithmetic of ordinary numbers and arithmetic of polynomials." 
 

What is meant, for instance, is that the polynomial multiplication problem 
(2x+3y)(4x+5y) is an algebraic generalization of the arithmetic problem 23*45. If (and 
this is a crucial qualification) the multiplication algorithm for whole numbers has been 
taught and learned intelligently, and if the formal manipulation component of that 
algorithm has been mastered, the formal and conceptual jumps from numbers to 
polynomials will be manageable. A student who sees the algebra problem for the first 
time will think or say “I’ve been here before,” especially if her algebra teacher is aware 
of and can communicate effectively the analogy between the arithmetic and algebraic 
versions of the multiplication algorithm. Conversely, a student who encounters the 
polynomial multiplication problem without having seen and practiced the whole number 
algorithm will be at a severe, if not crippling, disadvantage. 

 
More generally, it is naïve and counterproductive to suggest that calculators, or even 
symbolic algebra software, eliminate or reduce students’ need for formal algebraic skills. 
If technology is introduced appropriately, as a tool for obtaining numerical and graphical 
solutions to problems whose algebraic representations are too complex for hand 
calculation, facility with algebraic manipulation is crucial both for building those 
representations and for correctly inputting them into the computing device. In my own 
experience with technology-based courses, it is precisely those students with the weakest 
symbolic and algebraic skills who have the most trouble correctly entering formulas and 
expressions into their calculator or computer. 
 
Myth 2: Children who use the standard algorithms to solve sheets of drill problems are 
not thinking about what they are doing and thus are engaging in robot-like behavior that 
stifles their development as learners of mathematics. 
 
Fact: This myth, stated in a larger context, was deflated nearly a century ago by the 
eminent mathematician and philosopher Alfred North Whitehead in his Introduction to 
Mathematics [W]: 
 
It is a profoundly erroneous truism repeated by all copybooks, and by eminent people when they are 
making speeches, that we should cultivate the habit of thinking of what we are doing. The precise opposite 
is the case. Civilization advances by extending the number of operations that we can perform without 
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thinking about them. Operations of thought are like cavalry charges in a battle--they are strictly limited in 
number, they require fresh horses, and must only be made at decisive moments. 
 
What holds true of civilization is all the more true of mathematics. It is sensible to 
encourage children to think about all the details of the mathematics problems they are 
solving if, and only if, the final goal of their study of mathematics is to perform simple 
tasks such as adding or multiplying one- or two-digit numbers. For students to progress 
beyond this basic level, however, it is neither possible nor desirable to demand that they 
constantly think about the details of the steps and sub-steps of even moderately 
complicated problems. 
 
Any student taking a first year calculus exam, for example, must perform hundreds of 
small operations automatically and accurately. Indeed, a fundamental difficulty that 
bedevils many calculus students is that they have not learned to perform lower level 
mathematical operations automatically, accurately, and, as Whitehead advises, without 
thinking about what they are doing. Only by submerging a concern with irrelevant detail 
can students choose, develop, and execute an appropriate global strategy for solving a 
complicated problem.  
 
How do students acquire the ability to perform lower level operations automatically? 
Numerical and algebraic symbol manipulation skills are not inborn. They must be 
learned, and for most students the process is not easy. Children need to begin slowly, 
with a few carefully chosen examples, in order to gain an understanding of how an 
algebraic process works.  After that initial stage, practice for the sake of practice, i.e. drill 
for skill, is the path whereby the vast majority of students can reach the level of fluency 
and accuracy that is needed for formal mathematical competency.  
 
Myth 3: Children can invent their own algorithms. 
 
Fact: A mathematical algorithm (hereafter referred to simply as “an algorithm”) is an 
ordered sequence of steps that yields the solutions to a well-defined class of problems. 
For example, one could devise algorithms for any of the following classes of problems 
involving whole number operands: 
  
Multiply a 2-digit number by a 1-digit number. 
Divide any number by a 1-digit number. 
Multiply any two numbers.  
 
The algorithm must be formulated as a sequence of mathematical or logical steps in a 
way that describes exactly how to find the solution to every problem in the class, rather 
than by just demonstrating the procedure for a few specific examples.  
 
Any algorithm that purports to solve a class of problems must be both reliable and 
efficient. Reliable means: absent careless errors, a person who follows the steps in the 
algorithm will obtain the correct answer to every problem in the given class. Efficient 
means: on average, or perhaps always, the algorithm uses as few arithmetic steps as 
possible. 
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A procedure that solves some but not all problems in a given class is not an algorithm, 
but is rather a trial and error method that is certainly not reliable and is usually not 
efficient. While efficiency need not be the highest virtue for pedagogical purposes, 
reliability must not be compromised, for there is no a priori way to determine whether an 
unreliable algorithm can be used to solve a given problem. Throughout history, it has 
been a challenging task for adult mathematicians to devise reliable and efficient 
algorithms that apply to general classes of operands. Any claim that today’s K-8 students 
can do the same should be subjected to the most intense scrutiny.  
 
In view of such skepticism, the reader may wonder how it can be that so many curricula 
seem to overflow with examples of clever student solutions. Part of the explanation is 
that the authors carefully select problems that are well suited to ad hoc methods and then 
avoid analyzing either the reliability or the efficiency of the solution strategy. The 
following typical example, from the TERC teacher’s manual for the Investigations unit 
Building on Numbers You Know, shows how a student calculated 374 divided by 12 [T]. 
 
12 times 10 = 120 
12 times 20 = 120 + 120 = 240 
12 times 30 = 240 + 120 = 360 
12 times 31 = 360 + 12 = 372 and so the quotient is 31 with remainder 2. 
  
This strategy does yield a pleasantly compact solution –for the chosen three-digit 
dividend and two-digit divisor.  How well does a similar approach work with another 
problem of the same type, such as 967 divided by 18?   
 
10 18´s are 180 
20 18´s are 180 + 180 = 360 
40 18´s are 360 + 360 = 720 
50 18´s are 720 + 180 = 900 
Subtract 900 from the dividend 967, leaving 67 
3 20’s are 60 and so 
3 18´s are 54 (or, perhaps, 18 + 18 = 36 and so 36 + 18 = 54) 
Subtract 54 from 67, leaving 13, and so the quotient is 
50 + 3 = 53 and the remainder is 13 
 
Applied to this second problem, the TERC strategy appears rather clumsy. Indeed, it is 
quite inefficient when compared with the traditional algorithm, which replaces the first 
four TERC steps by the observation that 18 goes into 96 (tens) 5 times. 
 
Which of the two examples above more fairly represents the complexity and efficiency of 
the TERC solution strategy? It’s hard to say, because that strategy is not well defined. 
However, the basic reason for the clean solution in the TERC example is apparent: the 
quotient is  
 

31 = 10 + 10 + 10 +1, the sum of only four summands. 
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In contrast to the TERC procedure, an alternative division algorithm explained and 
advocated by Judith Sowder in [S] is both well defined and reliable. Curiously, she 
purports to demonstrate the efficiency of the variant algorithm by using a single example, 
for which the quotient also turns out to be  
 

31 = 10 + 10 + 10 + 1, the sum of the same four summands! 
 

The analysis in Section 2 will demonstrate quite clearly the inefficiency of Sowder’s 
algorithm when it is applied to randomly chosen problems rather than to this carefully 
selected, very easy, and apparently rather popular demonstration example. 
 
 
Myth 4: The traditional long division algorithm is obscure and hard to understand for 
both students and teachers. 
 
Fact: Here is an attempt at a clear exposition. Let’s start with a simple example and 
define some standard terms. 
 
In the problem 63 divided by 10, 
63 is the dividend; 
10 is the divisor; 
6 is the (integer part of the) quotient; and  
3 is the remainder.  
 
To find the quotient, observe that 6 times 10 is the highest multiple of 10 that is less than 
63, and so, for example, dividing 63 children into groups of 10 children each would 
separate them into 6 groups and leave 3 children “left over.” Therefore the quotient is 6 
with a remainder of 3.  
 
The standard division algorithm extends this method to more difficult problems with 
multi-digit dividends and divisors. It works as follows. You need to keep track of two 
numbers, the “current dividend” and the “current quotient,” each of which will be 
updated one or more times during the execution of the algorithm. To begin, set the 
current dividend equal to the dividend, and set the current quotient equal to 0. To 
continue, perform the following steps until Step 1 tells you to stop. 
 
 
Step 1: If the current dividend is less than the divisor, stop: the quotient is the current 
quotient and the remainder is the current dividend.  Otherwise, continue with 
 
Step 2: From among the multiples of the divisor by these multipliers: 
1, 2, 3, 4, 5, 6, 7, 8, 9, 
10, 20, 30, 40, 50, 60, 70, 80, 90, 
100, 200, 300, 400, 500, 600, 700, 800, 900, , ,   

• Select the largest multiple that is less than or equal to the current dividend.  
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• Subtract that multiple from the current dividend to update the current dividend.   
• Add the current quotient and the selected multiplier to update the current quotient.  
• Go to Step 1.  
 

 
The above description is complete, albeit condensed, but does not prescribe a method for 
writing down the solutions to particular problems.  There are many possible tableaux (or 
formats) for doing so, each illustrating a practical method for implementing the long 
division algorithm. The appendix to this paper contains an expanded explanation of that 
algorithm, together with both the tableau used in the United States and a variant that may 
help students and teachers to understand better the underlying ideas. 
 
 
Myth 5: There are many long division algorithms. In fact, students in other countries 
don’t learn the standard algorithm.  
 
Fact: There are only a handful of reliable methods for whole number division in the 
decimal number system. Of these, the standard algorithm is by far the most efficient. The 
following section will quantify just how much more efficient it is than one frequently 
discussed variant.  
 
The standard algorithm’s superior efficiency makes its use universal, or at least planet-
wide. What is not completely uniform, however, is the tableau that is used.  There are 
minor variations from country to country in both the number and positioning of the 
intermediate calculations that are written down by the problem solver.  However, any 
country’s tableau translates easily to any other country’s. A student who has learned long 
division in a Russian elementary school, for example, should be able to explain the 
correspondence between his tableau and its American counterpart by seeing how Steps 1 
and 2 of the division algorithm specified above are carried out in each. The variations are 
notational rather than procedural and have little if any effect on students’ understanding 
or on the amount of time they need to solve problems. 
 
Since the various tableaux now used in different countries differ only in minor details, it 
is appropriate to refer to a “modern” tableau for long division: modern, but not recent, for 
that tableau already appeared in print in the year 1491[C].  Its brevity, comprehensibility, 
and ease of use have never since been surpassed.   
 
Before that time, the standard algorithm was also the basis for division calculations, but 
the tableau used was clumsier and more prone to error than the modern one. Although 
part of the difference in ease of use stemmed from the fact that the earlier “galley” 
tableau had been designed for use with a sand table (a device that facilitates frequent 
crossing out and rewriting of digits), the major improvement offered by the modern 
tableau was that it made transparent the underlying logic of the division algorithm 
specified above in Fact 4. See the appendix for details. For further discussion of various 
tableaux for division and other algorithms, as well as for a general introduction to the 
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history and importance of the algorithms of arithmetic, a good reference is Frank Swetz’ 
engrossing exposition Capitalism and Arithmetic [Sw]1. 
 
In recent years, a muddling of the distinction between the terms “algorithm” and 
“tableau” has led to frequent miscommunication between mathematicians and math 
educators.  Both methods books and student texts typically explain how to do long 
division not by specifying an algorithm as defined earlier, but rather by illustrating a few 
specific problem solutions using the tableau of choice.  Such presentations conceal the 
underlying logic of the standard algorithm and all too easily descend into lists of 
mechanical instructions, a mode of pedagogy justifiably criticized in the anti-algorithm 
literature. Such criticism should be leveled against the exposition in those texts rather 
than against the algorithms themselves. Both an explicit description of the division 
algorithm and clear demonstration examples worked with a given tableau, as provided in 
Fact 4 above and in the appendix to this paper, are prerequisites for achieving proficiency 
with the use of the standard algorithm as well as for acquiring a reasonable sense of how 
and why it works.  
 
Before proceeding, it is important for the reader to understand what is, and what is not, 
being advocated in this paper. The essential message is: as one component of their 
elementary education, students need to acquire an understanding of, and automatic 
proficiency with, the standard algorithms of arithmetic. However, it is certainly not being 
suggested that those algorithms are now taught appropriately, or ever have been taught 
appropriately, in American schools. Clearly, it is possible to teach algorithms badly. 
However, if such teaching is prevalent in this country, as it appears to be, the solution is 
to improve teachers’ own understanding of algorithmic methods rather than to cast 
aspersions on the subject matter.  
 
The need for such improvement became apparent during an examination of a college 
library’s extensive mathematics education collection: it was impossible to locate a 
coherent specification of the long division algorithm. For this unfortunate situation, it is 
difficult to suggest a plausible explanation. In an attempt to fill the void, Section 1 and 
the appendix to this paper contain a detailed specification and overview, with examples, 
of both the multiplication and long division algorithms. 
 
Similarly, it is no secret that exercises geared toward the development of formal 
mathematical skills are not the high point of students’ educational experience. Much can 
be done to increase students’ interest in and enthusiasm for genuine mathematical 
activity. In particular, there is a great need for curricula that provide engaging and open-
ended computational activities, examples that illuminate rather than obscure the power of 
symbolic representations, and mathematically honest but age-appropriate discussions of 
the ideas underlying the decimal number system2.  For examples worth emulating, a good 

                                                           
1 Note however, that Swetz’ assertion on p. 217: “The prolonged historical popularity of the galley method 
of division was due in great part to its efficiency and resulting economy” is extremely misleading insofar as 
it suggests a favorable comparison with the modern tableau [O].  
2 For example, given any collection of marbles, why is there one, and only one, decimal whole number that 
tells you the size of the collection?  
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source is Math Workshop [WBSB], an innovative K-6 curriculum developed during the 
Sputnik era by an unusually diverse and capable group of mathematicians and educators.  
 
Finally, nothing in the following discussion should be construed as criticism of having 
students develop their own strategies for attacking arithmetic problems. Experimenting 
with numbers is an important part of children’s mathematical development. They 
certainly ought to know that a number of everyday calculations, such as finding the price 
of 7 bottles of soda costing 98 cents each, are best approached using a strategy other than 
the standard algorithm. However, both students and educators also need to understand 
that strategies for particular types of problems do not generalize to algorithms for general 
classes of problems, and furthermore that only the standard algorithms of arithmetic 
adequately model the particularly troublesome polynomial multiplication and division 
algorithms that are critical for the study of algebra and calculus.   
 
 
 

2. An alternative long division algorithm? 
 
To appreciate the background for some of the myths of the previous section, it is well 
worth analyzing part of an article by Judith Sowder[S].   Therein she claims to describe 
an algorithm for long division that is “easier” and “better remembered” than the standard 
one. Here is the relevant portion of the article, indented and in a smaller font, with my 
observations interspersed. 
 

How many of you can recall learning the long division algorithm? Suppose I tell you that I can 
show you an easier way to do long division, albeit a way that may take slightly more time to do. 
(Of course, if you weigh the time spent learning the method that does not make sense to you, 
perhaps time favors my procedure.) Here is a situation: As parents of the new septuplets, you 
estimate that you need 12 diapers per baby per day, or 84 diapers per day. You have been given 
2664 diapers. How many days will these diapers last? There are, of course, different ways of 
solving this problem, but suppose you decide you are going to solve the problem by dividing 2664 
by 84. This is equivalent to asking: How many 84s are there in 2664? We know there are at least 
ten 84s in 2664 because ten 84s is 840. We know there are not a hundred 84s since that would be 
8400, which is more than 2664. So we could begin by removing (that is, subtracting) ten 84s. 
We'll keep a tally on the right of the number of 84s removed. We see that we can do this again, 
and even again. But when we have only 144 diapers left, we cannot remove ten 84's again. We 
can, though remove one more 84. Finally, you have 60 diapers left, not enough for another day. 
Add up the tallies, and we see that the diapers will last 31 days, and we will have 60 diapers left.  
 
 
2664 
-840     10 
1824 
-840     10 
 984 
-840     10 
 144 
- 84      1 
  60     31 
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If a student had recognized at the beginning that I could take out thirty 84s (2520), then one 84, 
the student would have the traditional algorithm but for the placement of the digits and the writing 
down of some extra zeros. 
 

Sowder has modified the standard algorithm by permitting only powers of 10 as multiples 
of the divisor that may be subtracted from the dividend in Step 2 of the division algorithm 
described at the end of Section 1. Her method, hereafter called the “alternative division 
algorithm,” is a reasonable way to introduce long division. The effect of the modification, 
however, is to replace each multiplication step of the standard algorithm by a number of 
subtractions equal to the new digit in the quotient.  
 

But for most children, it takes as much time to determine that the first digit in the quotient is 3 as 
to subtract 840 three times.  

 
It would be enlightening to learn more about the sample population that Sowder studied 
in order to draw this sweeping inference. If the statement is true, it says more about the 
way children have been taught mathematics than about their mathematical capabilities. I 
would hope there is general agreement that finding out how many times 840 goes into 
2664 is a sensible example for teaching estimation skills to children. The ability to 
respond, automatically when asked, that 8 (hundred) goes into 26 (hundred) three times is 
a skill that every student should acquire before taking a high school mathematics course 
and most certainly before arriving in college.   
  

Students can make sense of division this way. It is not quite so efficient as the standard algorithm 
for long division, but it is less susceptible to error simply because it is understood. 

 
Both assertions should be examined carefully. The second, concerning susceptibility to 
error, is belied by the significant portion of students worldwide who carry out the 
algorithm automatically, effortlessly and correctly without bothering to think about how 
or why it works. Much more important is the claim of reasonable efficiency, which is 
misleading at best. Consciously or unconsciously, Sowder has chosen an example for 
which her alternative division algorithm requires just four subtractions, as compared to 
two subtractions and one multiplication for the standard method. Although the standard 
algorithm requires writing down only half as many digits as does the alternative 
algorithm,  the assertion that the latter is "not quite so efficient" as the former is not 
unreasonable. The real question is: has Sowder chosen a representative problem from 
among all division problems with a four-digit dividend and two-digit divisor? The answer 
is emphatically negative, as the following analysis demonstrates. 
 
The number of subtractions needed to solve a division problem using the alternative 
algorithm is the sum of the digits of the integer part of the quotient. For example, a 
problem with a quotient of 45 requires nine subtractions. In the worst case involving a 
three-digit quotient, 27 subtractions are required when the quotient is 999.  
 
How many four-digit by two-digit division problems are there? The dividend can range 
from 1000 to 9999 and so there are 9000 possible dividends. For each dividend, there are 
90 possible divisors, since the divisor is between 10 and 99. Therefore the total number 
of division problems of this type is 90 * 9000 = 810,000. The following table shows 
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percentages of these 810,000 problems grouped according to the number of subtractions 
required by the alternative algorithm. The results were obtained not by applying analytic 
methods, but rather by using what many would agree is an appropriate application of 
technology: writing a fifteen-line computer program that performs the 810,000 division 
problems and keeps track of the number of subtractions required for each.  
 
Number of Subtractions     Percentage of problems 
     
1 - 4                  9.8% 
5 - 9                 37.4%  
10 - 15               43.7% 
16 - 27                9.1%   
 
The results are clear. 

• Sowder´s example places in the easiest tenth of all problems. 
• A problem as atypical as Sowder´s, but in the most difficult tenth, requires 15 or 

more subtractions. 
• A representative 4-digit by 2-digit division problem, namely one at the 50th 

percentile of difficulty, requires 10 subtractions. 
 
Had Sowder chosen a representative problem, her method would have been revealed as 
both cumbersome and inefficient. For example, compare the two algorithms for 9265 
divided by 27: 
 
 9265                         343 remainder 4          
-2700  100                27/9265 
 6565                        81 
-2700  100                   116  
 3865                        108 
-2700  100                     85 
 1165                          81 
- 270   10                      4 
  895 
- 270   10 
  625 
- 270   10 
  355 
- 270   10 
   85 
-  27    1 
   58 
-  27    1 
   31 
-  27    1 
         4      343 remainder 4   
 
In this typical case, it is apparent that Sowder’s alternative division algorithm does not 
require just "slightly more" time than the standard one. Her version requires 10 
subtractions, of which 7 use “borrowing,” a notoriously error-prone procedure, as well as 
writing down 79 digits, not counting optional trailing zeroes. In contrast, the standard 
algorithm requires 3 multiplications and 3 subtractions, only one of which uses 
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“borrowing”, and writing down only 23 digits. Clearly, for typical problems, it is the 
alternative algorithm that is much less efficient and also much more prone to error.  
Furthermore, fully twenty per cent of the 810,000 problems done using that algorithm 
will require considerably more work (14 through 27 subtractions) than the example 
illustrated, whereas every one of those problems can be solved using the standard 
algorithm with only 3 multiplications and 3 subtractions. 
 

Efficiency is no longer a prime consideration, because you yourselves use calculators for long-
division problems when they are messy or you are in a hurry.  And this procedure will be better 
remembered, or, if not remembered, reinvented.  Contrary to what some people believe, God did 
NOT hand down on a tablet the standard long-division procedure we all learned. It simply is a 
streamlined procedure that was invented when computations had to be done quickly, such as in my 
[earlier] example of the graduate students doing calculations for the scientists [at Los Alamos].  

 
The mathematical and pedagogical (if not the theological) assumptions underlying this 
remark have already been critiqued in Section 1. It is certainly the case, as Sowder 
observes, that the standard algorithm is a streamlined procedure and so is well suited to 
calculation. However, it is simply not true that the only value, or even the principal value, 
of the standard algorithms of arithmetic is their ability to produce answers.  To support 
this assertion, the following section presents a substantial but only partial list of topics in 
the high school and college FAMC curricula wherein those algorithms resurface in a 
more sophisticated form. In particular, it turns out that the alternative division algorithm 
is not only inefficient at obtaining answers, but is also limited in scope, in that it provides 
no insight into any of the important algebra topics that are nicely illuminated by the 
standard algorithm.  
  

3. The importance of teaching algorithms 
 
The underlying logic of the algorithms of arithmetic, if properly taught, illuminates the 
relationships between the operations of arithmetic in a way that leads naturally to the 
study of algebra with variables. For example, the polynomial multiplication problem 
(3x+5)(2x+4) can best be introduced as a generalization of the integer multiplication 
problem 35*24. Adding polynomials and collecting terms is but a fancier version of 
adding multi-digit integers while keeping track of place value.  The decimal 
representation of integers provides a model for polynomials. An intelligent motivation of 
polynomial division problems is impossible if students are ignorant of the standard 
division algorithm for integers. And so on. 
 
Equally important, practice with arithmetic algorithms is a student’s first experience with 
the formal manipulation of mathematical symbols. Often lost in educators’ attempts to 
help children acquire “conceptual understanding” is the following basic reality:  formal 
mathematical competency requires well-developed symbol manipulation skills.  Even a 
glance at the solutions to a standard freshman calculus final exam reveals that students 
must carry out pages of algebraic manipulations accurately and efficiently. Students who 
come equipped with symbolic manipulation skills are not guaranteed success in college 
mathematics. However, those who lack such skills face virtually certain failure in any 
math or physics course that has not been watered down by the evisceration of algebraic 
content. 
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Among the standard algorithms, the long division algorithm is perhaps the most 
important as preparation for higher mathematical study. Elementary school students 
deprived of exposure to and practice with that algorithm will be severely handicapped 
when they encounter applications and generalizations that surface at several stages of 
their ensuing mathematical education.  
 
The first important application of the long division algorithm can and should be discussed 
in middle school: rational numbers, and only rational numbers, are expressible as 
repeating decimals. Indeed, a close look at the modern long division tableau shows that 
the decimal expansion of the quotient eventually becomes an infinite repetition of a finite 
sequence of digits, a lovely revelation that is totally obscured by the unwieldy tableau of 
the alternative division algorithm.  
 
Conversely, any repeating decimal can be written as a rational number by using a fraction 
whose numerator consists of that repeating sequence and whose denominator consists of 
as many successive 9’s as there are digits in the repeating sequence. Here are two 
examples in which the repeating sequence of digits is 2,3,4: 

• 0.234234234… = 234/999  

• 
1345 1 234 13438891.345234234...  1.345 0.000234234... *  
1000 1000 999 999000

= + = + =
  

 
If students are willing to believe that infinite decimal expansions make sense (in reality, 
such expansions must be justified by invoking moderately sophisticated arguments), they 
can easily discover lots of irrational numbers by devising infinite non-repeating 
sequences of digits. For example,  
 

1.1010010001000010000010000001….. 
 

is obtained by concatenating successive powers of ten, whereas 
 

1.23456789101112131415161718192021…… 
 

is the ordered concatenation of all counting numbers.  Proving that these and similar 
sequences of digits are non-repeating is a useful and tractable exercise in logic for middle 
school students. 
 
A rather different and very concrete reason for teaching K-8 students the standard long 
division algorithm is that they will need to know it in order to understand and become 
fluent with polynomial division, a procedure traditionally taught in high school as a 
prerequisite for at least three important topics in the college calculus curriculum.  Only 
the standard algorithm for integer division generalizes to the case of polynomials. Indeed, 
the underlying idea of the alternative algorithm, that division is repeated subtraction, is 
false in the case of polynomials. The reason is easy to understand. To divide 100 by 10, 
one can reduce 100 to zero by subtracting 10 from 100 ten times and thereby conclude 
that the quotient is 10; of course, it would be more efficient to remember that 100 is the 
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product 10*10. However, the only way to find the quotient xx ÷2  is to recall that 
2* xxx = , a fact that cannot be discovered by using repeated subtraction. Therefore, 

students who have not already become proficient using the standard algorithm for 
dividing whole numbers will have great difficulty when their high school algebra 
instructor explains division of polynomials. They will be totally lost when that algorithm 
reappears in calculus, for the instructor will assume that students know the traditional 
algorithm cold.  
 
For a more thorough treatment of the pedagogical and mathematical importance of the 
long division algorithm, see the essay by David Klein and Jim Milgram [KM]. 
 

Conclusion 
 
Referring to her alternative algorithm, Sowder states [S]: 
 

When I have showed this alternative procedure to prospective teachers, their reaction was 
sometimes one of anger--anger that they had been made to suffer through the mysterious and 
difficult long-division algorithm when it really is all so simple to understand. 

 
In such circumstances I too would be unhappy. The real question is: if those prospective 
teachers are typical, why weren’t they taught the long division algorithm by educators 
who themselves understood the algorithm and its importance for students’ later study of 
algebra?  Toward achieving such understanding, it is hoped that the motivated and 
leisurely exposition of that algorithm in the appendix to this paper will be shared 
fruitfully by as many educators as possible.  
 
Equally troubling, the statement  
 

If you weigh the time spent learning the method that does not make sense to you, perhaps time 
favors my [alternative division] procedure. 

 
expresses a paradoxical perspective that seems to have taken hold in part of the 
mathematics education community: if a piece of mathematics is hard to understand, 
excise it from the curriculum rather than investigate it carefully, with the cooperation of 
content experts whose mathematical perspective is both wide and deep, in order to find a 
clear, concise, and logical explanation.   
 
Most students and educators will agree with the following assertion in an arithmetic 
textbook that was published four hundred years ago [H]:// 
 

Division is esteemed one of the busiest operations of Arithmetick, and such as requireth a mynde 
not wandering, or settled upon other matters. 
 

However, there is no mystery to the long division algorithm. It has been known, 
understood, and used to advantage for centuries. The only remaining mystery is why a 
clear explanation of that algorithm is absent from teacher training courses offered by 
American schools of education.  
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In conclusion, the reader is invited to share the following thought-provoking excerpt from 
an article by Thomas Groleau, a professor of business administration, who explains well 
the importance of formal mathematical competency, even for those students whose 
professional activities will be largely nonmathematical [Gr]: 
 

Martial arts training in the sixth century started with the Horse Stance: legs wide apart, knees bent, 
back straight. Students would hold this uncomfortable position for up to an hour and simply 
concentrate. However, the Horse Stance doesn't show up in combat. I've seen plenty of "Kung Fu" 
flicks, and never seen Chuck Norris use the Horse Stance in a fight. 
 
So what was the Horse Stance's value? It built stamina, strength, balance and concentration, all 
vitally important combat skills. Perhaps more important, it weeded out those unwilling or unable 
to pay the price to learn the secrets of the martial arts masters. While today's martial arts students 
don't face the Horse Stance3, they still endure rigorous (and often tedious) foundational training. 
 
A traditional math curriculum can do the same for us. Algebra, geometry, calculus, etc. provide a 
skill foundation for OR/MS [Operations research/ management science]. Students who don't 
understand basic algebra tend to struggle with spreadsheets; the concept of absolute versus relative 
cell reference confuses them. On the other hand, students who understand traditional math tend to 
pick up spreadsheet skills with relative ease. 
  

Groleau’s analogy is apt. In any rigorous university course, students who wish to 
understand symbol-laden texts and lectures, keep up with homework assignments, and 
also perform well on examinations must arrive prepared with the prerequisite algebraic 
skills that are the mathematical analogues of stamina, strength, balance, and 
concentration. An appropriate regimen of rigorous foundational training is a critical 
ingredient of any K-8 math curriculum designed to prepare as many students as possible 
for success in high school and college mathematics curricula that emphasize FAMC, as 
well as for their later pursuit of mathematics-based careers. 
 

Appendix: Standard algorithms for multi-digit multiplication and division 
 
This appendix describes algorithms and illustrates tableaux for multi-digit multiplication 
and division of decimal whole numbers, in a way that makes as clear as possible the 
inverse relationship between multiplication and division. Consider, for example, the 
multiplication problem 27*4572 = 123444, and its inverse problem, 123444 ÷  27 = 4572. 
At the simplest level, the inverse relationship between these problems is:  
  

• 27*4572 is calculated by starting with zero and adding 27   
  4572 times to get up to 123444, whereas 
• 123444 ÷  27 is calculated by starting with 123444, then subtracting 27    
 4572 times to get down to zero. 

 

                                                           
3 Actually, they do; see [Y], for example.  Groleau’s error only strengthens his argument. I am indebted to 
my colleague Ethan Akin for directing me to this reference. 
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Of course, the stated procedures are ridiculously inefficient.  The decimal system of base-
10 representation of whole numbers makes possible an enormous increase in efficiency, 
assuming a certain “library” of prerequisite skills. Formulating the contents of that library 
requires the following simple piece of terminology: a place value number is the number 
obtained by writing a digit from 1 through 9, possibly followed by one or more zeroes.  
 
The place value numbers were listed earlier, in the discussion of the division algorithm in 
Section 1, as: 
 
1,2,3,4,5,6,7,8,9, 
10,20,30,40,50,60,70,80,90, 
100,200,300,400,500,600,700,800,900, , , and so on. 
 
The required prerequisite skills for manipulating whole numbers expressed in base 10 
notation are: 
 
For multi-digit multiplication: finding the product of any number and a place value 
number, and finding the sum of two numbers. 
 
For long division: finding the product of any number and a place value number, and 
finding the difference of two  numbers. 
 
Any whole number expressed in base-10 notation is the sum of place value numbers that 
correspond to its digits in an obvious way. For example, 4572 = 4000 + 500 + 70 + 2. It 
is this decomposition that lies at the heart of both the multiplication and division 
algorithms for such numbers.  
 
Let’s begin with the multiplication algorithm, which is easy to summarize: expand the 
second factor as the sum of place value numbers and apply the distributive law, 
beginning with the smallest place value number.  In the demonstration example, for 
example, calculate 27*4572 = 27*(4000 + 500 + 70 + 2) = 27*(2 + 70 + 500 + 4000) as 
the sum 
 
27 * 2    =      54 
27 * 70   =    1890   
27 * 500  =   13500   
27 * 4000 =  108000   
Total:       123444   
                                                
The multiplication tableau shown is a very slight variation of the following one, hereafter 
referred to as “standard,” in which trailing zeroes are omitted:  
 
               27                                                                       
               x  4572      
               54 
             189                                                                                                  
            135  
           108___      
           123444                                                             
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The alert reader will observe that the method shown presumes knowledge of column 
addition and so does not adhere strictly to the stated prerequisite skill list for the 
multiplication algorithm. Of course, it is possible to add just two numbers at a time, and, 
despite the resulting compromise of efficiency, the above tableau will be adjusted in that 
manner in order to clarify the inverse relationship between the tableaux for multiplication 
and division. The result is the modified multiplication tableau: 
 
Start:                0 
Add 27 * 2     =     54 
Subtotal:            54 
Add 27 * 70    =   1890   
Subtotal:          1944 
Add 27 * 500   =  13500   
Subtotal:         15444 
Add 27 * 4000  = 108000  
Total:         = 123444   

 
Next consider the inverse division problem 123444 ÷  27.   The formal specification of 
the long division algorithm has already been given in Section 1. Informally, the 
procedure for the current problem consists of starting with the dividend 123444 and then 
successively subtracting multiples of the divisor 27 by place value numbers. At each 
stage, choose the largest possible place value number that makes the difference non-
negative, and continue until that difference is less than the divisor. That difference is the 
remainder and the total number of 27’s subtracted is the quotient. 
 
In a first attempt to carry out the division algorithm, it is useful to list the multiples of 27 
by place value numbers as in the following table. The second column lists multiples of 27 
by the single-digit integers in the first column. To obtain each subsequent column, 
multiply the column to its left by 10.  
 
  
k  27*k    *10     *100    *1000      
  
1    27    270     2700    27000 
2    54    540     5400    54000 
3    81    810     8100    81000 
4   108   1080    10800   108000 
5   135   1350    13500   135000 
6   162   1620    16200   162000 
7   189   1890    18900   189000 
8   216   2160    21600   216000 
9   243   2430    24300   243000 
 
 
In summary, the table lists multiples of 27 organized as: one to nine 27´s, or 10´s of 27´s, 
or 100´s of 27´s, or 1000´s of 27´s. It is easy to scan the table to find the largest possible 
multiple of 27 that can be subtracted at each stage of the division algorithm.   
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The table above need not and should not be used by students who have good 
multiplication and estimation skills.  Those who have not yet acquired proficiency can 
develop their skills by constructing such tables.  
 
The following division tableau for the stated problem includes step by step comments 
that are appropriate during initial stages of instruction:  
 
 
To begin, start with   123444 (which is the dividend). 
Subtract 27 * 4000 =   108000  
                         
which leaves            15444   
Subtract  27 * 500 =    13500 
                            
which leaves             1944  
Subtract  27 * 70  =     1890 
                           
which leaves               54   
Subtract  27 * 2   =       54 
                            
which leaves (finally)     0, the remainder, since 0 < 27. 
 
 
Reading down, the number of 27’s subtracted was 4000 + 500 + 70 + 2 = 4572. Therefore 
the quotient is 4572 with remainder 0.      
 
 The modern long division tableau condenses the one above by 

• leaving out the words; 
• “bringing down”  digits from the dividend only as they  are needed; and 
• writing the answer horizontally, on top of the dividend, rather than vertically.  

 
In the division problem illustrated, the remainder is  0, as will always be the case for a 
division problem that is the inverse of a multiplication problem involving whole 
numbers. The reader should have no difficulty generalizing to the case of nonzero 
remainder: e.g., writing down the corresponding tableaux for the division problem 
123456 ÷  27= 4572 with remainder 12, and for its inverse problem, namely, start with 12, 
then add the product 4572*27 to get back to 123456. 
 
It is instructive to write the modern division tableau and the above "wordy” modified 
tableau side by side. It is likely that many students would benefit by listing the summands 
of the quotient vertically, even when they use the modern tableau, and so these are 
included in parentheses, to the right of the arrows below. Educators with perfect 
allegiance to the modern tableau may choose to wean their students from this minor 
variation.  
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Modified division tableau:                                   Modern division tableau: 
                                           __4572   
To begin, start with  123444           27/ 123444  In the quotient, 
Subtract  27 *4000 =  108000    --->(4000) 108     write 4 (thousands).                 
leaving                15444                154    Bring down the 4.   
Subtract  27 * 500 =   13500    ---> (500)  135    Write 5 (hundreds).  
leaving                 1944                 194   Bring down the 4. 
Subtract  27 *  70 =    1890    --->  (70)   189   Write 7 (tens).  
leaving                   54                   54  Bring down the 4.  
Subtract  27 *   2 =      54    --->   (2)     54  Write 2 (ones).  
finally leaving            0                    0  is the remainder.   
 
Writing the modified multiplication tableau obtained earlier for 4572 * 27 = 123444 next 
to the modified division tableau, above left, for 123444 ÷  27 = 4572 reveals the 
underlying design principle of the latter. Simply stated, it is that, in their modified forms 
presented above, 
 
The modern division tableau, read from top to bottom, is identical to the standard 
multiplication tableau, read from bottom to top.  
 
Indeed, in the multiplication tableau below at the left, the product 123444 is built up from 
0 by adding the place value numbers of the multiplier 4572, whereas in the division 
tableau to its right, subtracting those same place value numbers, but in reverse order, 
reduces the dividend 123444 back down to 0: 
 
Multiply: 4572 * 27 = 123444                      Divide:  123444 ÷  27 = 4572 
 
Start with            0            Start with            123444             
Add    27 * 2 =      54            Subtract  27*4000  =  108000    
Subtotal:            54            leaving                15444              
Add   27 * 70 =    1890            Subtract   27*500  =   13500  
Subtotal:          1944            leaving                 1944                   
Add  27 * 500 =   13500            Subtract    27*70  =    1890   
Subtotal:         15444            leaving                   54                     
Add 27 * 4000 =  108000            Subtract     27*2  =      54  
Total:           123444            finally leaving            0      
 
The inverse relationship between the two tableaux is perhaps easier to see when they are 
written horizontally, with intermediate sums and differences omitted:    
 
Multiply:          0 + 2*27 + 70*27 + 500*27 + 4000*27 = 123444   
Divide:             123444 – 4000*27 – 500*27 – 70*27 – 2*27 = 0    
 
In the final analysis, it is the exact and beautiful symmetry between the reasonably 
obvious tableau for multiplication, and the much less obvious modern tableau for long 
division, that underlies the popularity and utility of the latter, beginning more than five 
centuries ago [C] and continuing until the present day.   
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