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Abstract:  Received doctrine that permeates the literature and practice of K-12 
mathematics education, if implemented uncritically, will obstruct the development 
of skills that are critical for the study of calculus. Two false dichotomies are of 
principle concern : 

• Blind rote is always bad and leads to error, whereas thinking about what 
you are doing is always good and leads to success 

• Solving problems by algebra is bad, whereas concretizing problems by the 
use of physical and visual models is good.   

 
Introduction 

 
This paper is an attempt to enlist the assistance of K-12 educators in an effort to reduce 
the appallingly high failure rate of students in calculus courses locally and nationwide.  
Any attempt to do so must consider the critical role those educators play in helping 
students acquire tools for success in college mathematics. 
 
A principal dichotomy that looms large in discussions of mathematics education is “blind 
rote,” typically identified with formal algebraic manipulation, versus “conceptual 
understanding,” evidenced by the ability to concretize symbolic processes by reference to 
everyday experience.  Most educators believe that adherence to blind rote is the source of 
student’s weak mathematics performance, which can be ameliorated only by insistence 
on understanding. Herein that belief is challenged by reference to specific and significant 
examples that arise in the calculus curriculum. One conclusion is that the standard 
dogma, if accepted and implemented uncritically by K-12 mathematics educators and 
curriculum developers, poses a clear and present danger to the mathematical development 
of K-12 students who plan to study calculus in college.   
 
 
The important role of calculus in the college curriculum and the American job market can 
be inferred from two independently compiled statistics.  In Fall 2000, 1,156,000 June 
high school graduates began their freshman year at a four year college in the United 
States. At the same time, about 463,000 students in those institutions enrolled in first 
semester calculus.   Comparing the two numbers, one might estimate that forty per cent 
of freshman took calculus. In fact, the actual percentage was considerably lower, since a 
significant portion of students were re-taking first semester calculus, having failed the 
course previously one or more times  The author is unaware of any reliable estimate of 
the number of students in this category.  There is widespread agreement, however, that 
far too many students flunk calculus and are thereby precluded from pursuing their career 
of choice.  



 
In the United States and worldwide, one or more years of calculus are required of 
students who wish to pursue programs in science, mathematics, engineering, business, 
architecture, medicine, secondary math education, and many other fields.  Many of these 
students will use calculus as an integral part of their professional activities.   Nearly all 
will use the analytic and algebraic skills honed in calculus courses, and it is a lack of 
algebraic skills that poses the principal obstacle to students’ success in calculus.   
 
It is borne out by long experience that students with flawless algebra skills usually do 
well in calculus, while those with even moderate weaknesses in algebra perform poorly. 
In this respect, mathematics is unique. An essay with a few spelling and grammar 
mistakes is still intelligible.  A couple of missed notes in the performance of a piano 
sonata don’t make a difference.  In mathematics, however, there is much less room for 
error.  If a student makes an algebra mistake at the beginning of a problem, the remainder 
of the solution may be rendered completely irrelevant to the stated problem.  The plight 
of a student doesn’t notice that the algebra has gone astray is analogous to that of a deaf 
pianist who doesn’t notice her hands slipping laterally a key or two. Cacophony ensues. 
 
This essay is an attempt by a mathematician with long experience teaching all levels of 
calculus to engage K-12 educators constructively in an outcome-oriented discussion of 
the direction of current mathematics education reform. The author is no defender of the 
existing order. For decades, if not centuries, there clearly have been severe deficiencies in 
the mathematics preparation of entering students in the nation’s colleges and universities. 
However, it is yet more apparent that present trends in mathematics education will 
exacerbate rather than alleviate those deficiencies. 
 
The means for improving students’ success rate in calculus are already at hand and are 
embodied in most important and useful principle of mathematics reform: the need for 
multiple approaches to problem solving. In the author’s view, the current wave of 
curriculum reform has interpreted and implemented this doctrine far too narrowly. The 
need for multiple approaches applies in a far wider context than most mathematics 
educators imagine. Indeed, the examples elucidated herein demonstrate that in a 
curriculum designed to enable students to succeed in calculus, few patterns of 
mathematical thought or practice are either all good or all bad, nor can they be isolated 
from one another.  This essay will argue, among other unorthodoxies, that   
 

• Relying on blind rote is often good and is sometimes necessary.   
• The attempt to “understand” underlying principles is sometimes irrelevant and 

counterproductive. 
• Manipulatives must be used with discrimination, for reliance thereupon can foster 

habits of mind that damage students’ mathematical development.   
• Understanding and symbol manipulation skill are closely related.  

 
1. Pedagogy and history 

 
 



This paper is in part a commentary on visions and perspectives of today’s mathematics 
educators. In large part, new curricula are based on a “constructivist” approach to 
childhood education, articulated in the 1989 Standards of the National Council of 
Teachers of Mathematics. A definitive account of the role of constructivism in 
mathematics education is the foundational treatise Reconstructing Mathematics 
Education  [1993] ,  by Prof. Cathy Twomey Fosnot of the City College School of 
Education. That influential work describes sample topics from a constructivist curriculum 
and offers detailed accounts of the experiences of K-6 teachers who participated in an 
NSF sponsored teacher training program.  
 
One teacher comes to "realize how useless most things are out of context. How nothing 
makes sense mathematically if there's no concrete picture (even in one's mind) of what it 
is we're talking about." Another opines: "there seems to be no middle road between 
understanding and applying formulas."   
 
In the entire text, there is not a single instance of algebraic notation being met on its own 
terms. Every fraction, every number, and every operation on numbers is reduced to 
pictures. Every instance of "understanding" is visual (drawing diagrams) or physical 
(using number sticks and other manipulatives), to the virtual exclusion of mathematical 
notation. Symbols are viewed as obscurantist. "Understanding" and "constructing 
meaning" are synonymous with modeling.  Teachers are inculcated with a belief that 
algebraic manipulation can and should be avoided. In fact, one teacher, who enters the 
program knowing how to solve word problems by applying algebraic methods, verbalizes 
the following epiphany: 
 
"I can solve it with algebra, but whenever I go to algebra it is a cop-out. It means that I 
can't derive what the problem is about at its core, just based on logic and the information 
given." 
 
Insofar as these teachers’ statements characterize the pedagogical philosophy of K-12 
mathematics educators, it is critical to examine their relevance and validity for students 
who are relying on K-12 curricula to prepare for the study of calculus. The historical 
development of calculus illuminates the present discussion. It is generally understood that 
Newton and Leibniz, working independently, developed the main ideas of calculus. 
However, much less well known is that Isaac Barrow, Newton’s professor, has prior 
claim on many of the foundational concepts of the subject. However, Barrow’s name is 
obscured from history books because he failed to develop mathematical notation that 
would facilitate working with those foundational ideas and applying them to the solution 
of real world problems. In short, Barrow knew the concepts, but he didn’t have the right 
symbols and algebraic methods to work with. 
 
The basic ideas of calculus may be summarized as follows. 

• The derivative describes a rate of change of a quantity with respect to 
time, as well as the slope of the tangent line to a curve. 

• Integration is a summation process that can be used to find areas and 
volumes. 



• Integration and differentiation are inverse processes. 
 
For the benefit of an audience with little formal mathematical background, informal and 
algebra-free descriptions can convey the importance of these concepts and, in a general 
way, how they are applicable to scientific inquiry.  The lack of precision achieved 
thereby is perhaps analogous to that of Isaac Barrow’s version of calculus, but is 
appropriate for introductory courses in the history of mathematics, or liberal arts courses 
once characterized as “math for poets.”  
 
Students of poetry contribute mightily to civilization but are not the object of the current 
study. Today’s calculus students are exposed to and are expected to master the symbol-
rich and algebra-based methodology of Newton and Leibniz.  It is their version of 
calculus, achieved by the reduction of geometrical ideas to algebraic notation, that has 
permitted the study and solution of significant problems, ranging from the motion of 
planets to the study of magnetic and electric fields, to the configuration of electrons 
orbiting the atomic nucleus, to the sophisticated mathematics demanded by medical 
imaging technology. All of these applications are completely intractable without the use 
of algebraic notation and techniques. Indeed, Newton’s Principia Mathematica opens 
with the seemingly megalomaniacal statement: “Herein I explain the system of the 
world.”  That his grandiose claim is not an exaggeration is due in large part to his 
successful use of notation and formal methods to represent and quantify the problems of 
mathematical physics. 
 
This brief historical summary suggests that the above quoted teacher’s statement “I can 
solve it with algebra, but whenever I go to algebra it is a cop-out” is one of the more 
wrongheaded mantras in the literature of  K-12 mathematics education. This dogma is 
profoundly counterproductive to the success of high school graduates who are tackling 
first semester calculus and for whom algebra is the only method that can be used to solve 
the large majority of problems in textbooks and examinations.                                 
 
Anti-algebra bias is even more explicit in the statement "there seems to be no middle road 
between understanding and applying formulas.” This suggested Manichean distinction 
between understanding and formalism is based on ignorance, for formalism and   
reference to visual and physical models work hand in hand to permit the resolution of 
difficult questions. Specifically, algebraic techniques are the essential tool for moving 
from a general and intuitive discussion of a physical problem to a focused and 
quantitative understanding with predictive power.  
 
All of mathematical physics can be viewed as the use of symbolism to lead a bewildered 
traveler through a dark wood of difficult concepts. And that is precisely how algebra is 
used in freshman calculus. Today’s and tomorrow’s college students need to walk into 
their first calculus lecture with well honed formal and symbolic skills. Insofar as K-12 
curricula and educators de-emphasize algebraic techniques and denigrate algebraic 
formalism, they will deprive high school graduates of the opportunity to pursue 
mathematics-based careers.  

 



2. Examples from the calculus classroom 
 
Here are a few of the algebra errors that appear frequently on calculus exam papers.    

• Canceling the x’s in the fraction 4x
2x

+
+

 
• Solving 4x 2 =   to obtain 2x =  thereby omitting the negative solution  

• Rewriting     
222 )13x( as 13x ++  

 

• Rewriting  2x as 2x 22 ++  . 
• Dividing both sides of  xx 2 =  by x , concluding that 1x = , thereby omitting the 

solution 0x = . 
 
 
 
Do students make these errors because they adhere to “blind rote?” Would they be less 
likely to make these errors if they “understood” more? If so, what sort of understanding is 
required by students if they are to avoid these and similar errors? 
 

A critical observation is that the rational expression 4x
2x

+
+

 , whether it appears in a 
lecture, text, or exam, is presented to the student and must be confronted as a 
combination of symbols. In this it is unlike a numerical fraction, which in some but not 
all contexts could be thought of as part of a unit, or as an action on a thing, or as a 

property of a physical object.  The expression   4x
2x

+
+

may indeed arise from 
representation of a real-life model.   In all but exceptional circumstances, however, it is 
either impossible or counterproductive for the problem solver to keep track of the 
relationship between the model and its symbolic representation. 
 
To work successfully with symbolic expressions, students must decide which 
transformations (usually, but not always, simplifications) of the expression are both 
legitimate and useful for obtaining the desired answer. The decision process requires both 
intelligence and judgment. What it does not require, or even permit, is reference to 
experience. Relying on symbols, to many educators and curriculum developers, implies 
abandonment of the understanding of the underlying physical model. This is simply not 
the case in the study of non-trivial mathematical and scientific problems. Instead, the 
methodology of modern science is to convert an intuitive understanding of a physical or 
geometric principle into a symbolic representation, in order both to facilitate a deeper 
understanding of that principle as well as to transform that intuition into a testable 
prediction. 
 
In college mathematics lectures and exams, students need to manipulate fluently dozens, 
if not hundreds, of symbolic expression, and so they will have many opportunities to 



make common mistakes similar to the five listed above. Student errors on calculus exams 
can usually be classified as either careless or systematic. An example of a careless error is 

miscopying the fraction 2x
x2
+  as   2x

x2
+
+

, the sort of error that occurs only occasionally, 
typically when a student turns the page of his examination booklet. 
 
 In contrast, the five errors listed above are both frequent and systematic, in the sense that 
students who make them once make them more or less consistently. For example, it is not 
unusual for a student to ignore the negative solutions of equations such as  4x 2 =  and    

1y2 =    that may arise in the solution of different problems on the same exam, or     to 

incorrectly cancel expressions such as  4x
2x

+
+

 several times throughout the course of a 
semester’s examinations. 
 
 
In an attempt to expose the reasons for such errors, it is not easy to assert that students 

illegally cancel 4x
2x

+
+

because they don’t understand mathematical concepts. They 
certainly need to know the underlying principle: cancellation works only for common 
factors of numerator and denominator. However, a precise statement of this principle 
requires at least half a page of algebraic definitions, which in fact students should know. 
In practice, however, competent students don’t think about the cancellation rule when 
they are doing mathematics, for they have developed, through long experience, the ability 
to automatically distinguish situations in which cancellation is legal from those in which 
it is not.  
 
Students who hope to succeed in calculus need to develop an automatic facility for 
distinguishing not only between legal and illegal symbolic manipulations, but also for 
deciding which of several possible legal manipulations is appropriate to the problem of 
current interest.  If they don’t, they’re going to have trouble getting through a calculus 
exam or homework assignment. Subsequent sections will address methods for helping 
students to acquire the tools necessary for achieving these two goals.  
 

3. Blind rote 
 
Standard dogma asserts that understanding is always the cure for mistakes that would 
otherwise arise from adherence to blind rote. The clearest counterexample involves 
substituting an expression for the argument of a function. This requires a bit of 
explanation.  
 
A function can be thought of as a little black box that acts on a number to produce 
another number. For example, after carefully observing the path of a falling object, one 
could in principle express its height above the ground as a function of time. Deducing the 
precise form of the position function is the principle goal of celestial mechanics, 



ballistics, and all applications that require predicting from a priori information the 
position of a moving object at a given future time. 
 
As an illustrative example, consider the 2x    button on most calculators, a button whose 
sole purpose in life is to square a number, i.e. to multiply that number by itself.  Fulfilling 
this duty entails three steps: 
 
1.The user types a number, called the input, which then appears in the display  
2. The user presses the 2x  button. 
3. The calculator display switches to the output, or value, of the function, which in this 
example is calculated by multiplying the input by itself. 
 
In the absence of magic boxes such as calculators and computers, a first attempt to 
communicate to a human the action of the 2x  button might be: 
 
“The value of the squaring function at a number is the number times itself.” 
 
Unfortunately, this language is much too cumbersome to be useful in practice. A more 
concise statement would be 
 
Square of a number = number*number.  
 
The word “of” is superfluous, and is indicated more clearly by parentheses:    
Square (number) = number*number. 
 
In mathematics, brevity is essential, both because it saves paper and because it allows the 
eye to scan more easily a complex expression.  Therefore the function definition is 
abbreviated to something like: 
S(n) = n*n, in which the words “square” and “number” have each been abbreviated by 
their initial letter.   
 
In the algebra sentence S(n) = n*n, the first symbol is the name of the function. The name 
of the input is enclosed in parentheses. The output, the expression to the right of the equal 
sign, is an algebraic expression that can be figured out by applying arithmetic operations 
to the input. The entire sentence is the definition of the function S. 
 
In practice, mathematical custom of long standing prefers using letters at the end of the 
alphabet to name a function input, and the most common usage in elementary texts is to 
write the squaring function as S(x) = x.  Reader take note: contrary to certain usages in 
mathematics and literature, the letter ‘x’ does not indicate an unknown, but is rather a 
variable quantity that can assume any desired numerical value.  For example, a student 
wishing to find the square of 5 might write 
 
Step 1)  S(x) = x * x,  the function definition, and then  
Step 2)  S(5) = 5*5    to indicate that when x is 5, the output of the squaring function is   
  5*5, and finally  



Step 3)  S(5) = 25      to express the output as a number. 
 
The alert reader will observe that the equals signs in 1) and 2) mean different things. Step 
1) defines a function (a rule, if you will) whereas Step 2) asserts that the result of 
applying the function to the input 5 is the output 5*5. The distinction between these two 
usages is a possible source of confusion that should be addressed, in my view, by using 
alternate notation. In fact, some computer languages use the notation S(x) := x*x  to 
make it easier for the compiler (the program that translates from human language 
(including algebra)  to machine language) to understand the programmer’s intent to 
define a function. The remainder of this paper will employ that notation which, 
unfortunately, has yet to penetrate classrooms, texts, or journals of mathematics and 
science. 
  
Step 2) , the principal concern of the present discussion, is called argument substitution 
This  procedure is used thousands of times in any calculus text and perhaps a dozen times 
during a typical calculus examination, and so it deserves a precise description. The above 
example suggests the following description:  replace each symbol ‘x’ in the function 
definition by the symbol for the input.  Unfortunately, this fist attempt isn’t quite correct.  
To see why, assume that the addition fact   5 + 4 = 9 is temporarily unavailable, and try to 
evaluate (i.e., find the value of) the squaring function when its input is 5 + 4. According 
to the proffered description, the value of the squaring function is obtained as follows: 
  
Step 1) S(x) := x * x    (the function definition)   
Step 2) S(5 + 4) = 5 + 4 * 5 + 4    (Erase and replace each ‘x’ by ‘5 + 4.’) 
 
Unfortunately, the universal convention that multiplication is performed before addition 
forces the right hand side of Step 2) to be interpreted as 5 + 20  + 4, which is 29, rather 
than as  9*9,  or 81, the expected function value. To convey the desired order of 
operations, add before multiplying, it is necessary to use  parentheses: 
S(5 + 4) = (5 + 4) * (5 + 4), after which the function value may be simplified  to 9 * 9 = 
81. 
 
Therefore a complete description of argument substitution is as follows.   
 
Suppose a function is defined by S(x) =  [ expression involving x] 
To find the value of the function at an input, erase each symbol ‘x’ to the right of the 
= sign and replace it by the input enclosed in parentheses. 
 
A critical application of function notation is its use when the input is itself represented by 
an algebra expression rather than by a number, as was the case in the previous examples. 
 
Example 2:   Given S(x): = x*x, find S(a + b) without simplifying. 
Solution: S(a + b) = ( a + b ) * (a + b). 
 
Most students do this problem correctly. However, one occasionally encounters the 
following error: 



 
Example 3:  Given S(x) := x* x, find S(a+2) 
Error: S(a+2) = a^2 + 2. 
 
  
Finally, the following error is encountered with astonishing frequency in precalculus and 
calculus courses..  
 

Example 4:  Given  )hx(
1)hx()x(F
+

++=
, find f (x + h). 

 
This example, typically the initial step of a much longer problem, involves a slight twist, 
for the proposed input x + h includes the same symbol x that denotes the argument in the 
function definition. Nevertheless, the argument substitution rule explains exactly what to 
do. Erase and replace each ‘x’ by ‘(x + h)’ as follows. 
 

)hx(
1)hx()x(F
+

++=
 

 
If a student faithfully follows the argument substitution rule, Example 4 is a giveaway. 
Therefore, it is surprising that many college students frequently go astray in this problem. 
In particular, the following error is encountered with astonishing frequency: 

 
h

x
1x)x(F ++=

 
 
In the typical context of this problem, the error cited transforms a long problem into a 
trivial one. There is no sensible way to assign partial credit. The student has made a 
systematic error that will result, if not corrected, in a downward spiral of that students’ 
calculus grade and career aspirations. .  
 
Why is argument substitution so difficult? In a general sense, students may be troubled 
by the failure of that symbolic process to reflect any model that occurs in nature.  For 
example, the process of evaluating the function F(x) = x^3 + x^2 -3 when x = 2 cannot be 
illustrated by pictures or manipulatives. Indeed, models are irrelevant, for argument 
substitution is a purely formal process. In this writer’s opinion and experience, it is 
pedagogically productive to describe argument substitution as a game played with 
symbols. It is not a frivolous game by any means. To the contrary, it is the single most 
important formal tool of mathematics and science.  But it is a game that should be played 
by following the argument substitution rule to the letter. 
 
Students probably are trapped by their attempt to make sense of a purely formal rule. In 
the incorrect solution above, the student writes F (x + h) and notices that ‘h’ is being 
added to something. Because the function definition looks like an equation, and because 
changing an equation requires doing the same thing to both sides, the student decides to 
treat the right side fairly treatment by adding h to it. Unfortunately for such a student, a 



function definition isn’t an equation. There is absolutely nothing algebraic going on.  
Argument substitution must be carried out completely mechanically as a pure “erase and 
replace” operation that has nothing whatsoever to do with addition, subtraction, fractions, 
or any mathematical, arithmetical, or algebraic idea. It is simply a procedure, a recipe if 
you will, for altering the appearance of the original function definition.  
 
My conclusion, shocking as it may sound to some, is that argument substitution should be 
carried out by “blind rote,” and that attempting to understand what’s going on may lead 
to errors. Indeed, the following standard dichotomy: 
 

• Rote is bad, and leads to error. 
• Thinking about what you are doing is good, and leads to success based on 

understanding. 
 
is incorrect, or is at best irrelevant, for students who are attempting to master argument 
substitution. Indeed, a student who feels that she must “understand” every new 
mathematical idea is likely to fall into the sort of trap illustrated by the above example, 
whereas one accustomed to  plugging in symbols and playing with them by following 
rules is more likely to carry out the argument substitution rule with ease and consistent 
accuracy.  
 
Many subjects in mathematics offer ample opportunity to think deeply about mathematics 
and to proceed with eyes wide open. Argument substitution is most assuredly not one of 
them.  
 
A somewhat similar example is taken from a calculus lesson taught about two years ago. 
As part of a standard discussion of why the absolute value function f (x) = |x| doesn’t 
have a derivative at x = 0, the instructor wrote the following expression on the board 
 

h
|0||h0|lim

0h

−+
→   and then asked the class to help simplify the expression. The reader 

who doesn’t understand this expression or the previous sentence is advised not to worry. 
What is important for participating as a student in the following dialogue is to pay careful 
attention to the instructor’s language. 
 
 
Instructor: Who can help me simplify this expression? 
Students:( Silence.) 
 
Instructor:  (2nd try): Well, just do one step: anything that will make the expression 
simpler or shorter: 
Students: (Silence.) 
 
Instructor:  (desperate, 3rd try): I don’t care if you understand what you are doing. Inside 
that scary-looking formula is something that you see every day, a few symbols that can 
be replaced by just one symbol. Please! 



Students: (many hands raised): Change 0 + h to h !  
 
In my view, the students were catatonic because they were worried about the “meaning” 
of the expression, and so succumbed to a grave syndrome that I call “symbol shock.”  
They were worried about what the limit symbol meant, or perhaps by the use of vertical 
bars to denote absolute value. The teacher’s third attempt encouraged them to overcome 
their fears and realize that   ‘0 + h,’ even when embedded in a complicated expression, 
should be replaced by ‘h.’1  
 
At this juncture, the reader of a certain persuasion may well be thinking that the examples 
just considered are not the essence of mathematics; that that they involve useless playing 
with symbols; that a computer could do this sort of thing, and so forth. These concerns 
will be addressed in the following sections.     
 
  

4. What is calculus about, and why? 
 
 
In today’s sometimes acrimonious discussions of mathematics education, one encounters 
assertions that the very nature of mathematics is itself a subject for debate. Some have 
gone so far as to misinterpret Wittgenstein to buttress a claim that mathematics is socially 
constructed.[][]  For the purposes of this essay, all such philosophical discussion is 
irrelevant; rather, the concern is to prepare K-12 students for the specific conception of 
mathematics defined by the calculus curriculum at nearly all American colleges.  
 
The referenced conception of calculus is not completely universal, for the de-emphasis of 
symbolic manipulation and algebraic techniques in 1989 NCTM Standards-based 
curricula was accompanied by a parallel attempt to implement a reform vision of 
calculus. The stated goal of Harvard Calculus Consortium to was to “blah blah a vision of 
calculus [ in which understanding is emphasized rather than rote manipulation].’ [] That 
curriculum has achieved extremely limited endorsement at American universities, for 
repeated experiences in many mathematics departments,including City College’s, that 
have experimented with the Harvard curriculum indicate clearly that it fails to prepare 
students adequately for subsequent science and engineering courses.  
 
A critical subtext of mathematics reform in the twenty-first century is that symbolic 
manipulation may once have been important, but is now in the process of being rendered 
obsolete by the advent of technology. Initially, the availability of calculators suggested to 
some that there is no longer a need for K-6 students to memorize, practice, or even to 
learn the traditional algorithms of arithmetic. Later, when computer algebra systems were 
implemented on hand calculators, the argument was extended to call into question the 

                                                 
1 A more precise statement is that the symbolic expression “0+h” should be replaced by “h” whenever that 
expression signifies adding 0 to h. The reader is invited to devise an example in which this is not the case 
and in which the indicated replacement would be erroneous. The answer to this riddle is provided as an 
endnote.  



need for  students to learn algorithms for manipulating algebraic expressions and solving 
equations.    
 
In this writer’s view, the availability of computer technology is more of a curse than a 
blessing for the vast majority of college students. The buck stops in the nation’s science 
and engineering classrooms. Whether the subject is chemistry, biology, physics, 
engineering, economics, or finance, a students’ most challenging task is to follow and 
absorb page after page and blackboard after blackboard of formulas and equations. 
Science books cannot be de-algebraized for the simple reason that all technological 
innovation depends on an algebraic description of physical phenomena. 
 
 The K-12 traditional curriculum is structured, partly by design and partly by historical 
accident, to bring students to the level needed to achieve the facility with formal skills 
needed to speak effectively the language of science. It follows that the availability of 
computing devices that do either arithmetic or algebra is irrelevant to students’ needs to 
be able to read and to listen to mathematical formalism. Although computer algebra 
systems have a legitimate place in advanced courses, they pose a clear liability to 
students who are not already skilled with algebraic manipulation. Students who don’t get 
adequate practice doing (i.e., writing) algebra will encounter the greatest difficulty 
understanding texts and lectures, in much the same way that over- and early use of 
calculators correlates with and is a presumed cause of young students’ failure to acquire 
basic arithmetic skills.[][]   
 
 
Most disturbing to many university mathematicians is the suggestion, implemented by a 
number of NCTM Standards-based curricula, that traditional algorithms of arithmetic be 
de-emphasized or dropped entirely. The oft-stated objection that students should not 
waste time finding the answer to a problem that could be solved with a calculator entirely 
misses the core issue, which is the continuum of   logic and skills development that runs 
through the curriculum, from arithmetic to algebra to calculus. If students don’t learn the 
long division algorithm for whole numbers, they won’t be able to understand the long 
division algorithm for polynomials when they reach that topic in high school algebra. If 
they don’t know long division of polynomials, they won’t have any feel for techniques of 
integration in elementary calculus or for Laplace transforms that are introduced in more 
advanced courses. Even if hand computation of the answer to a division problem is no 
longer important, the algebraic patterns and processes that lead to the answer are very 
important indeed.  
 
In summary, K-12 students headed for calculus need to practice algebra because all 
advanced science texts speak a universal  language that is written with variables and is 
punctuated with subscripts, superscripts, summation signs, and lots of complicated 
notation. If they’re not comfortable with writing algebra, they won’t be comfortable 
reading it. If they haven’t devoted significant effort to hands-on manipulation of rational 
expressions, they will be in a total fog by the end of the first chapter of a typical science 
or engineering textbook. 
 



Nothing stated in this essay should be taken to suggest that proficiency with the language 
of science is sufficient for success in science. Rather, such proficiency is simply an 
absolute necessity without which students cannot survive. While there is substantial room 
for improvement at all levels of the curriculum, there is no room whatsoever for a 
perspective that calculus students can make do without algebra, or even with less algebra 
than they currently encounter. Indeed, the accelerating mathematization of formerly 
descriptive sciences such as biology makes it all the more crucial for a growing cadre of 
students to acquire fluent algebra skills before they begin calculus. 
 

Jelly beans and limits 
 
In “Reconstructing Mathematics Education,” [] Fosnot and Schifter discuss at length the 
classroom experience of Ginny, a teacher who models division by distributing jelly beans 
among class members. Such a model is the sensible sort of initial learning experience that 
any capable educator or parent would provide when introducing this subject. From the 
perspective of the current paper, the critical challenge of early mathematics education is 
to follow up these initial experiences with a gradual and appropriate transition to 
symbolic representations. To do so, it is critical to address the details of that transition 
process. The authors purport to do so in the following passage. .  
 
"This is not to say that all mathematical activity must retain an immediate relationship to 
the physical world. After enough experience distributing objects, the children in Ginny’s 
class will be able to imagine sharing without having to enact it, and reflection on their 
actions will allow them to generalize from specific cases to more abstract notions of 
division, although reference to their jelly bean problem can be called up as needed.” 
 
The abstract notions that Fosnot and Schifter refer to are not at all clear.  Indeed, the 
present writer the present has the greatest difficulty with their inspiring yet totally 
unsubstantiated conclusion: 
 
“In just a few years, children's understanding of division of whole numbers will form the 
basis for constructing an understanding of division of fractions, and later still, for 
algebraic rational expressions, hyperbolic functions, or the limit of 1/x as x increases 
without limit.”    
 
It is important to examine the credibility of the multiple transitions suggested in this 
visionary sentence. The first clause is problematic, for the transition from whole numbers 
to fractions requires a delicate balance of concrete representation and abstract notation. It 
is critical for children to understand the core notion that unit fractions such as 1/5 
represent the result of equal subdivision of a unit into pieces, but it is also essential for 
them to encounter and absorb, as early as possible, the purely algebraic statement that 3/5 
is an abbreviation for 3 * 1/5. To see why, it is useful to study a standard example of 
what is often attacked as blind rote: the rule for multiplying fractions. 
 
If teacher training programs and student texts were true to the doctrine of multiple 
representation, they would observe that the rule for multiplying  3/5 * 4/7  is an 



immediate consequence of the notational conventional stated above.  Indeed, that product 
is simply 3 * 1/5 * 4 * 1/7, which equals 3*4*1/5*1/7, and so the only remaining 
question is to devise a rule for determining the product 1/5 * 1/7.  By means of a simple 
observation about notation, the original product of general fractions has already been 
reduced to a much easier case, namely the product of unit fraction, easily determined by 
experience. In the present example, if a unit stick is equally subdivided into 7 pieces, and 
each piece is equally subdivided into 5 pieces, the resulting pieces are the result of equal 
subdivision of the unit stick into 5*7 pieces, each of length 1/(5*7). Thus 1/5 * 1/7 = 
1/(5*7). It follows immediately that the desired product is 3*4 * (1/(5*7)), which for the 
same reason as before is expressed in more compact fraction notation as 3*4/(5*7). 
 
The argument just presented adheres to the principle of using multiple representations by 
combining a symbolic argument with one based on modeling the number line as a stick. 
The author would be grateful for a reference to this argument in existing curricula or 
methods books.  On the contrary, mathematics educators have developed an uncritical 
adherence to a purely geometrical model:  the cake model for multiplying fractions. From 
observations of teacher training sessions, this model is quite difficult to absorb, even for 
prospective K-6 teachers, for at least two reasons.  First, the pictorial representation for 
multiplying general fractions is not consistent with that of multiplying proper fractions, in 
that the former produces a “product cake” that completely covers and therefore hides the 
original unit cake.  Furthermore, the cake arguments unnecessarily implicates an area 
interpretation of fractions in a situation where a linear representation, as the length of a 
stick, is more than sufficient. Area is a simple and elegant concept if presented carefully2 
but leads to muddled thinking otherwise.  Indeed, teachers in the observed training 
session failed to respond to the trainer’s inquiry whether the fraction multiplication rule  
is based on counting or upon area. 
 
While it is possible to entertain Fosnot and Schifter’s suggestion that division of fractions 
can be modeled adequately by experience of sharing, the present author considers the 
remaining transitions, from fractions to rational expressions to the definition of limit,  to 
be totally implausible. The transition from fractions to rational expressions is 
overwhelming, except in those few curricula that make an effort to give fourth or fifth 
graders a reasonable glimpse of algebraic notation.  When a student first encounters a 

rational expression such as 4x
8x

+
+

 he enters a new world of notation in which it is 
impossible and misleading to suggest that the new notation refers to an activity of 
sharing. On the contrary, it is assuredly counterproductive to describe this expression as 
standing for the distribution of x + 8 jellybeans among x + 4 children. The most probable 
consequence of such an exposition is that students will block out the variables and focus 
on the numerals. Precisely for this reason, it is critical to impress upon students that the 

                                                 
2 Area is a function that assigns to every piece of paper in the world a numerical value. In particular, there 
is a reference paper, a square whose area is 1. The area function is defined operationally as follows. Take 
any piece of paper and cut it into two pieces. Then the area of the original is the sum of the areas of the 
pieces. Curricula should be evaluated according to whether they articulate this or an equivalent definition.  



expression   4x
8x

+
+

 is NOT related to a situation in which 8 is divided by 4. Indeed, it 
may well be an attempt to identify this expression with a concrete model that leads 

students to try rewriting the fraction as  1x
2x

+
+

. Only a careful exposition of factoring 
algebraic expressions will empower students to cancel only when legal and necessary.  
 
The final transition, first from rational expressions to an understanding of hyperbolic 
functions, and second to understanding the limit of 1/x as x increases without limit, is 
nothing if not dramatic. The reference to hyperbolic functions is puzzling, for they   
occupy a minute corner of the calculus curriculum. It is the claim about understanding the 
definition of limit that demands close attention.   
 
In recent years, most college mathematics instructors have encountered more and more 
students who are less and less well equipped to understand the rigorous definition of 
limit. Indeed, that definition has been banished from the standard first-semester calculus 
course at all but a handful of top-rated institutions, precisely because fewer and fewer 
students graduate high school with the algebraic skills needed for a rigorous formulation 
of that definition. The situation has degenerated to the point that a recent paper in JRME 
[] surveys student perceptions of the intuitive meaning of limits without eliciting a single 
response that correctly transcribes the precise definition of limit into everyday language. 
Instead, the best intuitive statement is: 
 
The limit as x approaches 2 of f(x) = x*x is 4 because as x gets close to 2, then x*x gets 
close to 4, 
 
Such a quasi-definition is a pale approximation to the truth that is dangerously imprecise 
and contains significant potential for misunderstanding, for it suggests that the inter-
relationship of the two phrases 

• x gets close to 2  
• x*x gets close to 4 
 

is that an observer first contemplates the distance from x to 2 and afterward verifies that 
x*x is close to 4. Precisely the opposite is the case: a hypothetical challenger offers an 
arbitrarily stringent criterion for x*x being close to 4, and the respondent must respond 
with a notion of x being close to 2 that ensures fulfillment of the challenger’s demand. 
This correct formulation, to be tested and understood, must be translated to symbols to 
clarify methods for responding to the challenger’s demands. 
 
Unfortunately, an increasing portion of calculus instructors, confronted by students who 
immediately collapse into symbol shock when they see the variables  ε  and δ   that are 
traditionally employed to represent the two distances in the definition of limit, are forced 
to revert to the  mathematically imprecise quasi-definition.  The only way to help 
students avoid paralysis is to provide them with a rich experience of symbol manipulation 
before they get to college. To the extent that reform curricula reduce the emphasis on 



algebra and notation, they will enlarge rather than reduce the cohort of students who are 
properly prepared for calculus. It is the responsibility of curriculum developers to provide 
a clear map for the transition from jellybeans to symbols.  
  
 

What is to be done? 
 
 
Given the increasing need for many more high school graduates to be completely fluent 
with algebra, how might one improve the algebra instruction that is currently achieving 
the desired impact on all too few students in American high schools? A feasible solution 
has been formulated properly by mathematics educators but to date has been interpreted 
far too narrowly: understanding is a critical component of mathematics education. The 
kind of understanding that students need to be expert in algebra is not obtained by 
reference to models. What is lacking is a coherent overview of algebra rather than the 
current practice of presenting algebra as a disjointed collection of techniques.   
 
 The suggestion to be proposed can best be understookd by working though a short 
algebra quiz. The reader is assured that the result will not become part of his final grade. 
 
 Every student who walks into calculus class should be able to solve all of the following 
equations in five minutes.  
 

6x4x)f
5x4x )e

xx )d
xx )c

05x3 )b
5x3 )a

2

2

3

2

=+

=+

=

=

=+
=

 
 
 
In fact, relatively few students complete this quiz without falling into one or more of a 
number of systematic errors.   
  
a) is easy: divide both sides by 3 to get x = 5/3. 
 
b) is drummed into students so often that they tend to get it correct as well, by subtracting 
5 from both sides and then dividing by 3. 
 
c) trips up quite a few students. By analogy with a), students divide both sides by x and 
conclude that x = 1.   That’s clearly wrong, since x could also be 0. Any approach to 
polynomial solving must constrain students to avoid this error. The error arises because 



fractions whose denominators are 0 are meaningless, undefined, or illegal, depending on 
mathematical context as well as linguistic taste. 
 
d) is even worse. Again, students divide by x and  miss the solution x = 0. Furthermore, 
the resulting equation, x^2 = 1, tricks unwary students into writing the solution as x = 1, 
whereas of course x = -1 is also a solution. Very few students find all three roots. 
 
e) Students sometimes factor the left side to obtain x (x+4) = 5. This information is 
useless. Nevertheless, it is common to see such students proceed further by writing 
x = 5 and x + 4 = 5,   or perhaps x = 5 and x + 4 = 1.  These students know that factoring 
helps solve a quadratic equation. Unfortunately, the only equations that are ready to solve 
by factoring are equations in which one side is zero. The student who makes this mistake 
is indeed showing a lack of understanding, for he is generalizing the crucial principle: 
 

If a product is zero, one of the factors is zero 
 
to an incorrect but linguistically analogous statement about nonzero products. A correct 
solution is  
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In f), even students who correctly transform the problem to 06x4x 2 =−+  tend to get 
stuck because they try too hard to factor this expression. They have not learned  students 
that solving a quadratic equation involves a decision process, the conclusion of which is 
to use the quadratic formula rather than try to factor.  
 
Some students have an intuitive affinity for symbolic notation and solve the listed 
problems automatically, even with a minimum of formal instruction. The majority of 
students do not fall into this category. This group needs the careful attention of 
curriculum developers and mathematics educators.   
 
In New York State, a first step would be to reconnect those parts of the algebra 
curriculum that have been torn asunder by Sequential Mathematics and its successor 
Maths A and B. The second and more important step would be to adopt a new 
perspective on what is needed to “understand” symbolic mathematics. To do so,   
students should be encouraged to demonstrate their understanding of algebra by writing 
exercises or classroom discussions in which they formulate explicitly both the definitions 
of algebraic concepts and a critical repertoire of decision processes. Furthermore, as soon 
as they learn about a topic, they should be required to write about common pitfalls and to 



explain how to avoid them. The Appendix suggests sample examinations and solutions 
for this type of curriculum. 
 
The principal goal of this paper has been to expose as both misguided and 
counterproductive the rhetoric that identifies symbol manipulation with lack of 
understanding. Indeed, like any other subject, symbol manipulation can be studied and 
tested with or without understanding, and students are in dire need of a shift from the 
latter to the former paradigm.  
 
From a pragmatic perspective, a reasonable albeit imperfect measure of students’ 
understanding of algebra is their ability to perform symbol manipulation flawlessly. 
While one occasionally encounters an idiot savant in algebra, it is the author’s firm but 
unsubstantiated belief that students who consistently perform algebra without errors are 
prima facie demonstrating an internalized understanding of definitions and decision 
procedures. Even for these students, it would be beneficial to articulate their 
understanding as suggested above.  
 
For the far larger cohort of students whose algebra skills are not automatic, curriculum 
innovation that encourages students to verbalize concepts and decision procedures, 
avoids a disjointed presentation of algebra, and provides carefully structured intensive 
practice, might reverse current trends and increase the number of students who are 
prepared properly for the study of calculus.  It’s certainly worth trying.   
------------------------------------------------------------------------------------------------------- 
Endnote: Here are a few examples of expressions in which the symbols ‘0 + h’ do not 
indicate adding 0 to h and in which those symbols cannot be replaced by ‘h’. 
 
a) 30 + h is not the same as 3h (of course!). 

b) h0^2 +  is calculator notation for  ,h1h20 +=+  whereas replacing 0 + h by h would 
yield the incorrect expression .2h^2 h=  
c) 4*0 + h = h because multiplication is done before addition, whereas replacing 0 + h by 
h yields the incorrect expression 4*h. 
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